Tag Archives: HYPNO

Door #12: Plankton sampling with a vertebrate view!

HYPNO participating on an Arctic cruise by the Institute of Marine Research on RV Helmer Hanssen 17 Aug – 7 Sep 2015.

Julekalender Aino 2-001Most of the pelagic hydrozoans for HYPNO are collected with simple plankton nets, in the case of this Arctic cruise the double one you see in the picture. The net is towed vertically from above the bottom to the surface, bringing with it a representative sample of plankton – inclusive hydromedusae and siphonophores – from the entire water column. Standard plankton nets are generally lowered and retrieved at a speed of ~0.5 ms-1.

This particular station in the Arctic basin was over 2000 m deep, which means that a single tow takes more than an hour to complete. Sometimes waiting for the sample to come up can get a bit tedious – not at this station, though! With this beauty turning up right outside the hangar opening, the wait didn’t feel long at all!

SI_Arctic 24-8-2017 SI_Arctic 24-8-2016-Aino

Door #3: Prepare to be HYPNOtized

One of this year’s new projects at the Invertebrate collections is HYPNO – Hydrozoan pelagic diversity in Norway, funded by the Norwegian Taxonomy Initiative.

A selection of photos depicting some of the species encountered so far in the project

A selection of photos depicting some of the species encountered so far in the project

Hydrozoa are a class of cnidarians, the pelagic representatives of which include hydromedusae as well as colonial siphonophores and porpitids. They are thus “cousins” to the more familiar larger scyphozoan jellyfish such as the moon jelly or the lion’s mane jelly. The size of pelagic hydrozoans ranges from small medusae of less than 1 mm to siphonophore colonies reaching several meters in length. They are mostly predators that use their tentacles and stinging cells to catch other zooplankton or even fish larvae. Most of the time they go largely unnoticed by the public, but at times they can form blooms and deplete zooplankton as well as cause problems for aquaculture and fisheries or sting bathers.

The aim of HYPNO is to chart, document and DNA-barcode the diversity of hydromedusae and siphonophores occurring in Norway. Gelatinous zooplankton, including hydrozoans, has been generally less studied than their crustacean counterparts, and we know less about their diversity. This is due to several challenges in studying them. First of all, many pelagic hydrozoans, particularly the colonial siphonophores, are very fragile and often damaged during sampling with standard plankton nets. This can make it difficult to identify them. Secondly, preserving hydromedusae and siphonophores for later work is problematic. For morphological studies, they are best preserved in formalin, since most other fixatives used for zooplankton -including ethanol- cause distortion and shrinkage of their gelatinous bodies, rendering the animals impossible to identify. Formalin fixation, however, hinders further genetic work.

To overcome these practical problems, HYPNO uses gentle collection methods to obtain specimens in good condition. Collected samples are immediately examined for hydrozoans, and the live animals are identified and documented with photos before they are fixed in ethanol for DNA barcoding of CO1 and 16S sequences.

So far, HYPNO has participated on two cruises by the Institute of Marine Research: to the North Sea and Skagerrak on RV Johan Hjort 24 Apr – 4 May 2015 and to the Arctic Ocean and Fram Strait on RV Helmer Hanssen 17 Aug – 7 Sep 2015. So far, 34 species have been photographed and sampled for DNA. Here is a selection of pictures depicting some of the species encountered during these surveys.

You can read more about HYPNO at http://data.artsdatabanken.no/Pages/168312.

-Aino